groupe-personnes-diverses-ayant-reunion-affaires

Objectifs

  • Comprendre l’évolution des réseaux de neurones et les raisons du succès actuel du Deep Learning
  • Utiliser les bibliothèques de Deep Learning les plus populaires
  • Comprendre les principes de conception, les outils de diagnostic et les effets des différents verrous et leviers
  • Acquérir de l’expérience pratique sur plusieurs problèmes réels

Pré-requis

Bonnes connaissances en statistiquesBonnes connaissances du Machine Learning

La formation en détail

Les sessions de formation ont lieu de 9h00 à 12h30 et de 13h30 à 17h00

Introduction

  • Créer un premier graphe et l’exécuter dans une session
  • Cycle de vie de la valeur d’un nœud
  • Manipuler des matrices
  • Régression linéaire
  • Descente de gradient
  • Fournir des données à l’algorithme d’entraînement
  • Enregistrer et restaurer des modèles
  • Visualiser le graphe et les courbes d’apprentissage
  • Portées de noms. Partage des variables

Introduction aux réseaux de neurones artificiels

  • Du biologique à l’artificiel
  • Entraîner un PMC (perceptron multicouche) avec une API TensorFlow de haut niveau
  • Entraîner un PMC (perceptron multicouche) avec TensorFlow de base
  • Régler précisément les hyperparamètres d’un réseau de neurones

Entraînement de réseaux de neurones profonds

  • Problèmes de disparition et d’explosion des gradients
  • Réutiliser des couches pré-entraînées
  • Optimiseurs plus rapides
  • Éviter le sur-ajustement grâce à la régularisation
  • Recommandations pratiques

Réseaux de neurones convolutifs

  • L’architecture du cortex visuel
  • Couche de convolution
  • Couche de pooling
  • Architectures de CN

Deep Learning avec Keras

  • Régression logistique avec Keras
  • Perceptron avec Keras
  • Réseaux de neurones convolutifs avec Keras

Réseaux de neurones récurrents

  • Neurones récurrents
  • RNR de base avec TensorFlow
  • Entraîner des RNR. RNR profonds
  • Cellule LSTM. Cellule GRU
  • Traitement automatique du langage naturel

Autoencodeurs

  • Représentations efficaces des données
  • ACP avec un autoencodeur linéaire sous-complet
  • Autoencodeurs empilés
  • Pré-entraînement non supervisé avec des autoencodeurs empilés
    • Autoencodeurs débruiteurs.
    • Autoencodeurs épars.
    • Autoencodeurs variationnels.
    • Autres autoencodeurs
  • Réflexion de groupe et apports théoriques du formateur.
  • Travail d’échange avec les apprenants sous forme de réunion – discussion.
  • Utilisation de cas concrets issus de l’expérience professionnelle.
  • Validation des acquis par des questionnaires, des tests d’évaluation, des mises en situation et des jeux pédagogiques.
  • Alternance entre apports théoriques et exercices pratiques (en moyenne sur 30 à 50% du temps)

Modalités pédagogiques : Présentiel, Distanciel et AFEST

Ingénieurs/chefs de projet IA, consultants IA et toute personne souhaitant découvrir les techniques Deep Learning

En formation présentielle

Accueil des apprenants dans une salle dédiée à la formation et équipée avec :

  • Ordinateurs
  • Vidéo projecteur ou Écran TV interactif
  • Tableau blanc ou Paper-Board

En formation distancielle

A l’aide d’un logiciel comme ® Microsoft Teams ou Zoom, un micro et une caméra pour l’apprenant.

  • Suivez une formation en temps réel et entièrement à distance. Lors de la session en ligne, les apprenants interagissent et communiquent entre eux et avec le formateur.
  • Les formations en distanciel sont organisées en Inter-Entreprise comme en Intra-Entreprise.
  • L’accès à l’environnement d’apprentissage (support de cours, ressources formateur, fichiers d’exercices …) ainsi qu’aux preuves de suivi et d’assiduité (émargement, évaluation) est assuré.
  • Les participants recevront une convocation avec le lien de connexion à la session de formation.
  • Pour toute question avant et pendant le parcours, une assistance technique et pédagogique est à disposition par téléphone au 02 35 12 25 55 ou par email à commercial@xxlformation.com
  • Positionnement préalable oral ou écrit.
  • Feuille de présence signée en demi-journée.
  • Evaluation des acquis tout au long de la formation.
  • Questionnaire de satisfaction
  • Attestation de stage à chaque apprenant
  • Evaluation formative tout au long de la formation.
  • Evaluation sommative faite par le formateur.
  • Nos formateurs sont des experts dans leurs domaines d’intervention
  • Leur expérience de terrain et leurs qualités pédagogiques constituent un gage de qualité

Inscription

Inter
Intra
Sur Mesure
Durée :
2 jours
Tarif :
750 € HT - Prix jour / personne
Référence :
4-IT-DL

Prochaines sessions

PréInscription