Google Cloud Platform Ingénierie de données

groupe-personnes-diverses-ayant-reunion-affaires

Objectifs

  • Apprendre à concevoir et déployer des pipelines et des architectures pour le traitement des données
  • Comprendre comment créer et déployer des workflows de machine learning
  • Être capable d’interroger des ensembles de données
  • Comprendre comment visualiser des résultats des requêtes et créer des rapports

Pré-requis

  • Maîtriser les principes de base des langages de requête courants tels que SQL
  • Avoir de l’expérience en modélisation, extraction, transformation et chargement des données
  • Savoir développer des applications à l’aide d’un langage de programmation courant tel que Python
  • Savoir utiliser le Machine Learning et/ou les statistiques

La formation en détail

Les sessions de formation ont lieu de 9h00 à 12h30 et de 13h30 à 17h00

Introduction à l’ingénierie des données

  • Explorer le rôle d’un data engineer
  • Analyser les défis d’ingénierie des données
  • Introduction à BigQuery
  • Data lakes et data warehouses
  • Démo: requêtes fédérées avec BigQuery
  • Bases de données transactionnelles vs data warehouses
  • Démo: recherche de données personnelles dans votre jeu de données avec l’API DLP
  • Travailler efficacement avec d’autres équipes de données
  • Gérer l’accès aux données et gouvernance
  • Construire des pipelines prêts pour la production
  • Etude de cas d’un client GCP
  • Lab : Analyse de données avec BigQuery

Construire un Data lake

  • Introduction aux data lakes
  • Stockage de données et options ETL sur GCP
  • Construction d’un data lake à l’aide de Cloud Storage
  • Démo : optimisation des coûts avec les classes et les fonctions cloud de Google Cloud Storage
  • Sécurisation de Cloud Storage
  • Stocker tous les types de données
  • Démo : exécution de requêtes fédérées sur des fichiers Parquet et ORC dans BigQuery
  • Cloud SQL en tant que data lake relationnel

Construire un Data Warehouse

  • Le data warehouse moderne
  • Introduction à BigQuery
  • Démo : Requêter des TB + de données en quelques secondes
  • Commencer à charger des données
  • Démo: Interroger Cloud SQL à partir de BigQuery
  • Lab : Chargement de données avec la console et la CLI
  • Explorer les schémas
  • Exploration des jeux de données publics BigQuery avec SQL à l’aide de Information_Schema
  • Conception de schéma
  • Démo : Exploration des jeux de données publics BigQuery avec SQL à l’aide de Information_Schema
  • Champs imbriqués et répétés dans BigQuery
  • Lab : tableaux et structures
  • Optimiser avec le partitionnement et le clustering
  • Démo : Tables partitionnées et groupées dans BigQuery
  • Aperçu : Transformation de données par lots et en continu

Introduction à la construction de pipelines de données par lots EL, ELT, ETL

  • Considérations de qualité
  • Comment effectuer des opérations dans BigQuery
  • Démo : ETL pour améliorer la qualité des données dans BigQuery
  • Des lacunes
  • ETL pour résoudre les problèmes de qualité des données

Exécution de Spark sur Cloud Dataproc

  • L’écosystème Hadoop
  • Exécution de Hadoop sur Cloud Dataproc GCS au lieu de HDFS
  • Optimiser Dataproc
  • Atelier : Exécution de jobs Apache Spark sur Cloud Dataproc

Traitement de données sans serveur avec Cloud dataflow

  • Cloud Dataflow
  • Pourquoi les clients apprécient-ils Dataflow ?
  • Pipelines de flux de données
  • Lab : Pipeline de flux de données simple (Python / Java)
  • Lab : MapReduce dans un flux de données (Python / Java)
  • Lab : Entrées latérales (Python / Java)
  • Templates Dataflow
  • Dataflow SQL

Gestion des pipelines de données avec Cloud Data fusion and Cloud composer

  • Création visuelle de pipelines de données par lots avec Cloud Data Fusion: composants, présentation de l’interface utilisateur, construire un pipeline, exploration de données en utilisant Wrangler
  • Lab : Construction et exécution d’un graphe de pipeline dans Cloud Data Fusion
  • Orchestrer le travail entre les services GCP avec Cloud Composer – Apache Airflow
  • Environment : DAG et opérateurs, planification du flux de travail
  • Démo : Chargement de données déclenché par un événement avec Cloud Composer, Cloud Functions, Cloud Storage et BigQuery
  • Lab : Introduction à Cloud Composer

Introduction au traitement de données en streaming

  • Traitement des données en streaming

Serverless messaging avec Cloud Pub/Sub

  • Cloud Pub/Sub
  • Lab : Publier des données en continu dans Pub/Sub

Fonctionnalités streaming de Cloud Dataflow

  • Fonctionnalités streaming de Cloud Dataflow
  • Lab : Pipelines de données en continu

Fonctionnalités streaming à haut débit BIGQUERY ET BIGTABLE

  • Fonctionnalités de streaming BigQuery
  • Lab : Analyse en continu et tableaux de bord
  • Cloud Bigtable
  • Lab : Pipelines de données en continu vers Bigtable

Fonctionnalités avancées de BIGQUERY et performance

  • Analytic Window Functions
  • Utiliser des clauses With
  • Fonctions SIG
  • Démo: Cartographie des codes postaux à la croissance la plus rapide avec BigQuery GeoViz
  • Considérations de performance
  • Lab : Optimisation de vos requêtes BigQuery pour la performance
  • Lab : Création de tables partitionnées par date dans BigQuery

Introduction à l’analytique et à l’IA

  • Qu’est-ce que l’IA?
  • De l’analyse de données ad hoc aux décisions basées sur les données
  • Options pour modèles ML sur GCP

API de modèle ML prédéfinis pour les données non structurées

  • Les données non structurées sont difficiles à utiliser
  • API ML pour enrichir les données
  • Lab : Utilisation de l’API en langage naturel pour classer le texte non structuré

Big Data Analytics avec les notebooks Cloud AI plateform

  • Qu’est-ce qu’un notebook
  • BigQuery Magic et liens avec Pandas
  • Lab : BigQuery dans Jupyter Labs sur IA Platform

Pipeline de production ML avec Kubeflow

  • Façons de faire du ML sur GCP
  • Kubeflow AI Hub
  • Lab : Utiliser des modèles d’IA sur Kubeflow

Création de modèles personnalisés avec SQL dans BIGQUERY ML

  • BigQuery ML pour la construction de modèles rapides
  • Démo : Entraîner un modèle avec BigQuery ML pour prédire les tarifs de taxi à New York
  • Modèles pris en charge
  • Lab : Prédire la durée d’une sortie à vélo avec un modèle de régression dans BigQuery ML
  • Lab : Recommandations de film dans BigQuery ML

Création de modèles personnalisés avec Cloud AUTOML

  • Pourquoi Auto ML?
  • Auto ML Vision
  • Auto ML NLP
  • Auto ML Tables
  • Réflexion de groupe et apports théoriques du formateur.
  • Travail d’échange avec les apprenants sous forme de réunion – discussion.
  • Utilisation de cas concrets issus de l’expérience professionnelle.
  • Validation des acquis par des questionnaires, des tests d’évaluation, des mises en situation et des jeux pédagogiques.
  • Alternance entre apports théoriques et exercices pratiques (en moyenne sur 30 à 50% du temps)

Modalités pédagogiques : Présentiel, Distanciel et AFEST

Développeurs expérimentés en charge des transformations du Big Data

En formation présentielle

Accueil des apprenants dans une salle dédiée à la formation et équipée avec :

  • Ordinateurs
  • Vidéo projecteur ou Écran TV interactif
  • Tableau blanc ou Paper-Board

En formation distancielle

A l’aide d’un logiciel comme ® Microsoft Teams ou Zoom, un micro et une caméra pour l’apprenant.

  • Suivez une formation en temps réel et entièrement à distance. Lors de la session en ligne, les apprenants interagissent et communiquent entre eux et avec le formateur.
  • Les formations en distanciel sont organisées en Inter-Entreprise comme en Intra-Entreprise.
  • L’accès à l’environnement d’apprentissage (support de cours, ressources formateur, fichiers d’exercices …) ainsi qu’aux preuves de suivi et d’assiduité (émargement, évaluation) est assuré.
  • Les participants recevront une convocation avec le lien de connexion à la session de formation.
  • Pour toute question avant et pendant le parcours, une assistance technique et pédagogique est à disposition par téléphone au 02 35 12 25 55 ou par email à commercial@xxlformation.com
  • Positionnement préalable oral ou écrit.
  • Feuille de présence signée en demi-journée.
  • Evaluation des acquis tout au long de la formation.
  • Questionnaire de satisfaction
  • Attestation de stage à chaque apprenant
  • Evaluation formative tout au long de la formation.
  • Evaluation sommative faite par le formateur.
  • Nos formateurs sont des experts dans leurs domaines d’intervention
  • Leur expérience de terrain et leurs qualités pédagogiques constituent un gage de qualité

Inscription

Inter
Intra
Sur Mesure
Durée :
4 jours
Tarif :
750 € HT - Prix jour / personne
Référence :
4-GO-INDO

Prochaines sessions

PréInscription